
 International Journal of Scientific & Engineering Research, Volume 2, Issue 1, January-2011 1
 ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

A Role of Query Optimization in Relational
Database

Prof.M.A.Pund, S.R.Jadhao, P.D.Thakare

Abstract— Nowadays, we are flooded with information through and from the Databases. We have to deal with a constantly
increasing amount of facts, figures and dates. Therefore, it is necessary to somehow store this information in an adequate way.
This is what database systems were developed for. One particular approach is the relational databases. In a relational database
all information can be found in a series of tables in which data is stored in rows and columns. The problem with SQL query, its
declarative – does not specify a query execution plan and also we have to deal with as a consequence is the question as how to
find the specific facts that might interest us amongst all the information stored in the described tables. And as one might put it,
“Time is Money” in our society, it is not only important to find the required information, but also with proper execution plan so
that it takes less time. The solution is to convert SQL query to an equivalent relational algebra and evaluates it using the
associated query execution plan.
This paper will introduce the reader to the basic concepts of query processing and query optimization in the relational database
domain. How a database processes a query as well as some of the algorithms and rule-sets utilized to produce more efficient
queries will also be presented. I will discuss the implementation plan using join orderingto extend the capabilities of Database
Engine program through the use of randomized algorithms iterative improvement method in the database area in the context of
query optimization. More specifically, large combinatorial problems such as the multi-join optimization problem have been the
most actively applied areas [9].
Index Terms—SQL Query optimization, relational database, Query Processing

—————————— ——————————

1. INTRODUCTION

Query optimization plays a vital role in query processing.
Query processing consists of the following stages:

1. Parsing a user query (e.g. in SQL)
2. Translating the parse tree (representing the

query) into relational algebra expression.
3. Optimizing the initial algebraic expression.
4. Choosing an evaluation algorithm for each rela-

tional algebra operator that would constitute
least cost for answering the query.

Stages 3-4 are the two parts of Query Optimization.
Query optimization is an important and classical compo-
nent of a database system. Queries, in a high level and
declarative language e.g. SQL, which require several al-
gebraic operations, could have several alternative compo-
sitions and ordering. Finding a “good” composition is the
job of the optimizer. The optimizer generates alternative
evaluation plan for answering a query and chooses the
plan with least estimated cost. To estimate the cost of a
plan (in terms of I/O, CPU time, memory usage, etc but
not in pounds or dollars) the optimizer uses statistical
information available in the database system catalogue
[5].

2. QUERY OPTIMIZATION
2.1 What is a Query: A First Approach?
In a relational database all information can be found in a

series of tables. A query therefore consists of operations
on tables. Here a list of the most commonly performed
operations:
• Select (): Returns tuples that satisfy a given predicate
• Project (): Returns attributes listed
• Join (): Returns a filtered cross product of its argu-
ments
• Set operations: Union, Intersect, and Difference
The most common queries are Select-Project-Join queries.
In this paper, we will look at queries, which consist of
these three operations on tables only, focusing on the join-
ordering problem we will see in the following example.

2.2 Example
To illustrate how a query is performed and why query
optimization might be necessary, we will look at the fol-
lowing basic database:
Student: { stud_id, name, semester }
Lecture: { lect_id, title, lecturer }
Professor: { prof_id, name }
Enrolment: { stud_id, lect_id }
The question we want to ask is:
Which semester are the students in, which are enrolled in
a course of professor Newton?
If we translate this into an SQL query, in a first step, we
might get:
Select distinct s.semester
From student s, professor p, enrolment e, lecture l
Where p.name = ‘Newton’ and

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 1, January-2011 2
 ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

l.lecturer = p.prof_id and
l.lect_id = e.lect_id and
e.stud_id = s.stud_id
This query gives us the following access plan:
We see very quickly that this query cannot be the best
way to reach our answer. We have three cross products,
which means that we create a table whose number of
rows is |s|*|e|*|l|*|p|. For large tables s, e, l and p this
result is not acceptable.
One possible way of improving this is to perform the se-
lections (here done in the very last step) earlier on in the
search as shown in Fig.1.
This way, we get the following result:

Fig.1. Query Plan 1
By doing the selections earlier on, we make restrictions
and our final table is of smaller size than the former one.
We can improve our result even more by substituting the
cross with join operators as shown in Fig.2.

The result is:

Fig.2. Query Plan 2
Fig.2. Query Plan 2

We have improved our original query model. But now we
are at a point were it gets harder to tell how to further
improve our model: Knowing that the join operator is
commutative as well as associative, we don’t know which
order of these joins would suit us best to minimize the
resulting table at each step. Even though the result of the
joins will be the same, it makes a difference, which join

ordering we use. [5].
To illustrate this, we look at an example:
We consider the three relations S, R and T as shown in
Table 1, 2, 3.

Each one of the tables consists of a number columns
and rows. By illustrating the join procedure for the cases
(R S) T or R (S T), we will see, why the join or-
dering does indeed matter. The result of these operations
will be the same, as expected. But we will see, that the
tables produced at the intermediate step will vary consi-
derably with regards to their size:

TABLE 1 TABLE 2 TABLE 3
Relation R Relation S Relation T

R
A B C
 a1 b1 c1
a1 b2 c1
a1 b3 c2
a2 b3 c1

Case 1 : (R S) T
TABLE 4

Result of (R S)
R S

A B C D E
a1 b1 c1 d1 e1
a1 b1 c1 d2 e2
a1 b1 c1 d3 e1
a1 b2 c1 d1 e1
a1 b2 c1 d2 e2
a1 b2 c1 d3 e1
a2 b3 c1 d1 e1
a2 b3 c1 d2 e2
a2 b3 c1 d3 e1
a1 b3 c2 d2 e1

TABLE 5
Result of (R S) T

Case 2: R (S T)
TABLE 6

Result of (S T)
S T

C D E F
c2 d2 e1 f1

TABLE 7
Result of R (S T)

S
C D E
c1 d1 e1
c1 d2 e2
c1 d3 e1
c2 d2 e1

T
C F
c2 f1
c3 f2
c4 f3

c6 f1

(R S) T
A B C D E F
a1 b3 c2 d2 e1 f1

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 1, January-2011 3
 ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

We see that in the first case, a temporary relation with
many rows has to be stored as shown in Table 4 even
though it is reduced to only one row as shown in Table 6
in the second step.
In the second case, however, we have chosen a better join
ordering. The temporarily stored relation contains only
one row. Hence, the great importance of the join ordering
is notified.
2.3 Some Definitions and Terms
In this elaboration, we will use following notations:
In query optimization we are looking at a state space con-
sisting of all access plans that compute the same result to a
query.A solution of any given problem is described in a
processing tree.
Every one of the access plans is associated with a certain
cost, which is given by a cost function. I will not introduce
exact cost models in this elaboration. For now we just
assume, that the cost function usually takes as input the
number of pages that have to be read from or written to
secondary memory to calculate a cost estimate for the
access plan.
If the database is assumed to be much larger than the
available memory, we can neglect al costs except for the
I/O costs. The processing tree is, as we have encountered
it in the previous chapter, a binary tree. It consists of
leaves that are the base relations, internal nodes which are
the join operators and edges, which represent the data
flow [8],[9].
All possible access plans to a query define our state space
E.This state space might become very large, for some cas-
es. Therefore, we might choose to simplify it and reduce
the amount of access plans by only allowing access plans
of a certain shape.
In general, a node in a processing tree can have operands,
which are composites themselves. This is what we call a
bushy tree. If we want to form a binary tree out of n base
relation (all of which can figure only once in the
processing tree) we find)!1)(1()1(2 nn n different
solutions. This means that the state space becomes very
large for growing n. A common restriction that is often
made to reduce the size of the state space, is to allow only
so called linear trees. A linear tree is a tree, whose internal
nodes all have at least one leaf as a child. To take this
even further, many algorithms consider only the space of
all left-deep trees, meaning that only trees of the follow-
ing form are allowed.This restriction reduces the number
of accepted access plans significantly. The set of all possi-
ble left-deep access plans with n base relations is reduced
to n! [3].

2.4 Formal Approach
With the notations given above, we can attempt to state
the general problem of query optimization as follows:
Given a query q, a space of access plans E, and a cost function
cost(p) that assigns a numeric cost to an execution plan p E.
Find the minimum cost access plan that computes q. This

minim- al cost access
plan is called an
optimal solution to
the query.

3. QUERY OPTIMIZATION ALGORITHMS: AN
OVERVIEW

When developing query algorithms, the optimality of the
produced access plans is a very important issue. There-
fore, many different algorithms have been developed and
proposed as a good approach to the query optimization
problem. So far, all of these algorithms can be divided
into three major categories:
1) Deterministic Search Algorithms
2) Genetic Algorithms
3) Randomized Algorithms
Evaluation:
In Deterministic Search Algorithms:-On the other hand, it
is known that the dynamic programming algorithm has
high memory consumption for storing all the partial solu-
tions found in the different loops.
Another downside of dynamic programming is its expo-
nential running time. This makes an application involving
more than about 10 – 15 queries prohibitively expensive.
Still, for queries with only a few joins, this approach
works very well.
In Genetic Algorithms:- A problem with this approach
might be that one member of the population is so promi-
nent that it dominates the whole wheel. This way, it caus-
es the disappearance of the other members’ features. The
evolution converges toward a generation, consisting of
one super member. Even if the extinct members of the
population might not have provided a high quality solu-
tion, they could still contain some valuable information.
Randomized algorithms are based on statistical concepts
where the large search space can be explored randomly
using an evaluation function to guide the search process
closer to the desired goal. Randomized algorithms can
find a reasonable solution within a relatively short period
of time by trading executing time for quality. Although
the resulting solution is only near-optimal, this reduction
is not as drastic as the reduction in execution time. Usual-
ly, the solution is within a few percentage points of the
optimal solution which makes randomized algorithms an
attractive alternative to traditional approaches [6],[7].
3.1 Randomized Algorithms
The problem of finding an optimal plan is NP hard.
Therefore we might try, if randomized algorithms could
improve our search of an optimal plan.
A randomized algorithm is an algorithm that makes ran-
dom choices as it proceeds. In our case, this means, that
the algorithm performs random walks in the state space.
Itmoves from state to state with the goal of finding a state
with the minimum cost [1],[5],[6].
The advantages of randomized algorithms:
- Simplicity: There are many examples, where a rando-
mized algorithm can match or even outperform a deter-
ministic algorithm
- Speed: There are cases where the best known rando-

R (S T)
A B C D E F
a1 b3 c2 d2 e1 f1

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 1, January-2011 4
 ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

mized algorithm runs faster than the best known deter-
ministic algorithm.
_ Lower time bounds are expected in many cases.

Possible inconveniences of randomized algorithms:
- Often, the required solution is found only with high
probability
- A randomized algorithm might not find the correct an-
swer at all [1].
- There might exist cases, where a randomized algorithm
could take very long to find the correct answer.
In the following sections, The best known randomized
algorithm, As per study,I will suggests the randomized
because this is the only approach which is better suited
for join optimizations.
Which again are two different randomized algorithms
named Iterative Improvement (II) and Simulated Anneal-
ing (SA).
But for a start I will start with Iterative Improvement me-
thod; it will be necessary to introduce some terminology
which is commonly used when working with randomized
algorithms [1].
3.1.1 Terminology
Randomized algorithms consider access plans as points in
the solution space.
Different access plans are connected through edges, allow-
ing us to move around the solution space. These edges
are defined by a set of allowed moves.
This set depends very much of the solution space. A
commonly used set for left-deep processing trees would
for example be the following:
S = {Swap, 3Cycle}, where swap simply exchanges the
positions of two arbitrary relations and 3Cycle performs a
cyclic rotation of three arbitrary relations in the
processing tree (Note that this is allowed due to the
commutativity and associativity of the join operator.)
Neighbour(A) is the set of access plans that can be reached
from the access plan A by performing moves defined in S.
Further, we call a state A a local minimum if for paths
starting at A any downhill move comes after at least one
uphill move, whereas a state is considered to be a global
minimum if it has the lowest cost among all states in the
solution space[2].
3.1.2 Iterative Improvement (II)
The Iterative Improvement algorithm starts at a random
state. It then performs a number of downhill moves in
order to find a local minimum. These moves are chosen
as follows:
Starting at a random state S, II explores the set of neigh-
bours of S for possible moves. II determines the cost of S
as well as that of a randomly chosen neighbour. If the
neighbour’s cost is lower than cost(S), then, the move is a
downhill move and is therefore accepted. If the neigh-
bour’s cost is higher, no move is performed. Instead,II
will repeat the cost calculation with a different neighbour,
in the hope of finding one of lower cost than S.
Further moves are performed until reaching a local min-
imum. The procedure above is repeated various times,
each time starting at a new random state, until a stop-
ping-condition is met. At that point the algorithm com-

pares the local minima it found and chooses the state with
the lowest cost. If there were enough repetitions of the
first steps, we can hope that the algorithm has found a
state that is close to the global minimum [1].
==
function lI()
minS = S
while not (stopping_condtition) do {
S = random state
while not (stopping condition) do {
S’ = random state in neighbours(S)
if cost(S’) < cost(S)
then S = S’
}
if cost(S) < cost(minS)
then minS = S
}
return minS
==

4 CONCLUSIONS

We have met three types of algorithms in this elaboration.
First, we looked at a deterministic algorithm, namely the
exhaustive search dynamic programming algorithm.
We have seen that it produces optimal left-deep
processing trees with the big disadvantage of having an
exponential running time. This means, that for queries
with more than 10-15 joins, the running time explodes.
Genetic and randomized algorithms on the other hand
don’t generally produce an optimal access plan. But in
exchange they are superior to dynamic programming in
terms of running time.
Since we have chosen a better join ordering the tempora-
rily stored relation contains only one row. So consider the
great importance of the join ordering for minimizing the
number of rows.Iterative Improvement algorithms have
shown that it is possible to reach very similar results with
randomized algorithms depending on the chosen para-
meters.
Seeing that in future it will become more and more im-
portant to be able to deal with larger size queries, it is
necessary to further explore these algorithms and try to
improve them in terms of longer running time.

REFERENCES

[1] Yannis E.Ioannidis and Youngkyung Cha Kang: Randomized
Algorithms for Optimizing Large Join Queries.

[2] Michael Steinbrunn, Guido Moerkotte, Alfons Kemper: Heu
ristic and Randomized Optimization for the Join Ordering
Problem.

[3] P. Griffiths Selinger, M. M. Astrahan, D. D Chamberlin, R.
 A. Lorie, T. G. Price: Access Path Selection in a Relational Da-

tabase Management System.
[4] Ben McMahan, Moshe Y. Vardi: From Pebble Games to Query

Optimization www.wikipedia.com
[5] Kristina Zelenay: Query Optimization
[6] P Selinger M.M.Astrahan,D D Chamberlin R A Lorie and T G

Price,Acess Path Selection in Relational Database Management
System,in Proceedings of 1979 ACM-SIGMOD Confe-

http://www.ijser.org/
http://www.wikipedia.com/

International Journal of Scientific & Engineering Research, Volume 2, Issue 1, January-2011 5
 ISSN 2229-5518

IJSER © 2010
http://www.ijser.org

rence,Boston,MA,June 1979,pp 23-34
[7] T K Sellis,Multiple Query Optimization,ACM Transactions on

Database Systems 13 , 1 (March 1988),pp 23-52
[8] A Swami and A Gupta , Optimization of Large Join Queries,in

Proceedings of the 1988 ACM-SIGMOD Confe-
rence,Chicago,IL,June 1988,pp 8-17

[9] A Swami, Optimization of Large join Queries Combining Heu-
ristics and Combinatorial Techniques, in Proceedings of the
1989 ACM-SIGMOD Conference, Portland, OR, June 1989

http://www.ijser.org/

		ijser.editor@ijser.org
	2005-10-26T12:47:33+0300
	France
	Editor IJSER
	I attest to the accuracy and integrity of this document

